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The presence of viscosity normally has a stabilizing effect on the flow of a fluid.
However, experiments show that the flow of a fluid in which viscosity decreases as
temperature increases tends to form shear layers, narrow regions in which the veloc-
ity of the fluid changes sharply. In general, adiabatic shear layers are observed not
only in fluids but also in thermo-plastic materials subject to shear at a high-strain rate
and in combustion and there is widespread interest in modeling their formation. In
this paper, we investigate a well-known model representing a basic system of conser-
vation laws for a one-dimensional flow with temperature-dependent viscosity using
a combination of analytical and numerical tools. We present results to substantiate
the claim that the formation of shear layers can only occur in solutions of the model
when the viscosity decreases sufficiently quickly as temperature increases and we
further analyze the structure and stability properties of the layers.c© 2001 Academic Press
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1. INTRODUCTION

The broad goal of this paper is to explore the role of dissipation in the large-time behavior
of systems of nonlinear hyperbolic conservation laws. In general, the nonlinear character of
the conservation laws induces a destabilizing mechanism, while the presence of viscosity
and thermal diffusion has the opposite effect. We examine this delicate competition in the
context of one-dimensional fluid flow within the framework of thermomechanics.

It is generally conjectured that heat dissipation alone cannot prevent the formation of
shocks; see Dafermos and Hsiao [11]. An important question is whether or not the combined
dissipative effect of viscosity and thermal diffusion can counterbalance the destabilizing in-
fluence of nonlinearity and induce the existence of globally smooth solutions; see Dafermos
and Hsiao [9] and Tzarvaras [25]. Most of the existing analysis in the literature is restricted
to the case where the viscosity does not vary with temperature. It is possible to perform
some rigorous analysis in this case, but physically this is a rather crude assumption.

To elucidate the effects of the dependence of the viscosity on temperature and in particular
to determine if the dependence of viscosity upon temperature can destabilize the flow of a
fluid, Dafermos and Hsiao ([10]) proposed a test problem that models an adiabatic rectilinear
shearing flow in an incompressible Newtonian viscous fluid between parallel plates with
one plate moving at a constant distance from the other plate; see Fig. 1. We choose Cartesian
coordinates so that thex-axis is perpendicular to the plates located atx = 0 andx = 1. We
assume that the plate atx = 0 is at rest and the plate atx = 1 moves with constant velocity
V in a direction orthogonal tox and that between the plates, the flow is parallel to the plates
and uniform in the directions orthogonal tox. The Lagrangian description of the balance
laws of mass, momentum, and energy with reference densityρ0 = 1 yields

ut (x, t)− vx(x, t) = 0, 0< x < 1, 0< t,

vt (x, t)− σx(x, t) = 0, 0< x < 1, 0< t, (1)

(e(x, t)+ 1

2
v(x, t)2)t − (σ (x, t)v(x, t))x + qx(x, t) = 0, 0< x < 1, 0< t,

whereu denotes the deformation gradient,v the velocity,σ the shear stress,e the internal
energy, andq the heat flux. Under the assumption of an adiabatic shearing flow in an
incompressible Newtonian viscous fluid and normalizing so that the density and the specific
heat are one, the conservation laws from (1) reduce to

vt = σx and et = σvx. (2)

FIG. 1. The one-dimensional model of shear flow.
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Internal energy and viscosity are determined by temperatureθ via known constitutive
relations,e= ê(θ) andµ = µ̂(θ). In typical fluids, ê(θ) is increasing and convex; the
functionµ̂(θ) is typically increasing in gases and decreasing in liquids. It is convenient to
eliminateθ betweene= ê(θ) andµ = µ̂(θ) and consider viscosity as a known function of
the internal energy. With this in mind, for simplicity we writeθ for the internal energy and
refer to it as the temperature.

For a constitutive relation, we assume that the fluid is linearly viscous; that is, the shear
stress is related to the temperature and velocity gradient as follows

σ = µ(θ)vx. (3)

The same model has been proposed by Tzavaras ([23]) to study the destabilizing effect of
thermal softening in solids during plastic shearing. For non-Newtonian fluids the constitutive
relation reads

σ = µ(θ)|vx|vn−1
x , n ≥ 1. (4)

This constitutive law is appropriate for a solid in a plastic region exhibiting thermal softening
and strain rate sensitivity (measured by the parametern) but no strain hardening. More
general models that include strain-rate dependent materials have been studied by Tzavaras
([24, 25]). In this paper we restrict our attention to Newtonian fluids, i.e.,n = 1 in (4), but
note that our qualitative results generalize ton > 1.

To complete the model, we impose the boundary conditions

v(0, t) = 0 and v(1, t) = V, t ≥ 0,

whereV > 0 is constant since the fluid is subject to a steady shear. We also impose initial
conditionsv(x, 0) = v0(x)andθ(x, 0) = θ0(x). Putting this all together, the model problem
is

vt (x, t) = σx(x, t), 0< x < 1, 0< t,

θt (x, t) = σ(x, t)vx(x, t), 0< x < 1, 0< t,
(5)

v(0, t) = 0, v(1, t) = V, 0< t,

v(x, 0) = v0(x), θ(x, 0) = θ0(x), 0< x < 1,

whereσ(x, t) = µ(θ(x, t))vx(x, t).
A short inspection yields two important facts about (5). First, the boundary conditions

imply that there is a conserved quantity for the solutions of (5), namely

V = v(1)− v(0) =
∫ 1

0
vx(s, t) ds=

∫ 1

0

σ(s, t)

µ(θ(s, t))
ds. (6)

It turns out that this conserved quantity plays a critical role in the large-time behavior of
the solutions.

Second, whenv0(x) = V x andθ0(x) = a, wherea > 0 constant, then the solution to (5)
is theuniform shear flow

v(x, t) = V x, θ(x, t) = h(t),
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whereh(t) is determined by ∫ h(t)

a

ds

µ(s)
= V2t,

assumingµ−1 is integrable; see Fig. 1. In other words, the flow keeps the uniform shear
profile if it begins with a uniform profile. Much of the analysis of (5) in the literature
concentrates on understanding the stability of the uniform shear flow, what happens when
the initial datav0(x) are close tov0(x) = V x for V ≈ 1 andθ0 is close to a positive constant.

As the material is being sheared, energy is pumped into the system. Since the flow is adia-
batic, temperature will keep rising and tend to infinity with time. The distribution of temper-
ature can either go to infinity uniformly in space or it could localize. Note that in the uniform
shear flow, the temperature grows witht uniformly in x. If the temperature tends to infinity
in a localized region inx, then a shear layer can develop in the same region. Shear layers, or
bands, are narrow regions in which the velocity of the fluid changes sharply or narrow layers
of concentrated shearing deformation are observed during the plastic shearing of materials.

Various mechanisms and associated continuum thermomechanics models have been pro-
posed for the explanation of shear layers and there is extensive literature on the forma-
tion of shear layers; see, for example, Bai and Dodd [1], Batra [2, 3], Baylisset al. [5],
Clifton et al.[8], DiLellio and Olmstead [12, 13], Edwards and French [15], Maddocks and
Malek-Madani [20], Needleman [21], Wright [27, 28], and Wright and Walter [29, 30]. For
numerical computations of shear layers in various models, we refer to Batra and Ko [4],
Drew and Flaherty [14], French and Garcia [19], French [18], and Walter [26].

Many of these references study (5) or closely related models. The motivation for studying
this simple model is to obtain a better understanding of the phenomenon of localization of the
temperature and the formation of shear layers. Moreover, the conservation laws that define
(5) lie at the heart of any more sophisticated models describing shear layer phenomena.
The main question we address in this paper is whether or not this simplified model is still
sufficiently complex as to allow the formation of shear layers.

Detailed mathematical analyses of (5) have been carried out by Dafermos and Hsiao
([10]), Tzavaras ([23]), and Bertschet al. ([6]). The analysis shows that ifµ(θ) tends
monotonically to a positive constant asθ →∞ and eitherµ2 is concave orµ is convex,
then for all smooth initial data, there is a unique solution of (5) that converges to the uniform
shear flow ast →∞. In other words, the uniform shear flow is a stable solution attracting all
smooth solutions. The analysis also shows that the situation is more delicate if the viscosity
tends to zero as temperature increases; i.e.,µ→ 0 asθ →∞. In this case, the existence
of solutions and the stability of the uniform shearing flow depend on the rate of decrease
of µ with θ . In particular, Dafermos and Hsiao and Bertschet al.consider the test problem
(5) when

µ(θ) = θ−α, α > 0. (7)

The parameterα controls the rate of decrease of the viscosity as the temperature increases.
The results can be summarized as follows.

THEOREM 1.1. 1. If 0< α < 1, then(5) has a unique solution for all time that con-
verges asymptotically to the uniform shear flow as t→∞. In particular,

vx(x, t) = V +O
(
t−(1−α)/(1+α)

)
θ(x, t) = ((1+ α)V2t

)1/(1+α) (
1+O

(
t−(1−α)/(1+α)

))
. (8)
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2. If α = 1, then(5) has a unique solution for all time and the gradient of the velocity
converges to a steady-state function determined by the initial data while the temperature
grows likeO(t1/2). In particular, there is a positive functionθ∗ determined by the initial
data such that

lim
t→∞ vx(x, t) = V√

2
θ∗(x)

lim
t→∞ t−1/2θ(x, t) = θ∗(x) (9)

σ(x, t) = V√
2

(
t−1/2+O(t−1)

)
.

3. If α > 1 and the initial data are close to the uniform shear flow, then there is a unique
solution that moves away from the uniform shear flow and might blow up in finite time.

Since shear bands do not form in (5) whenα ≤ 1, we focus our attention on the case
α > 1. Aside from the local existence of a unique solution that moves away from the uniform
shear flow, not much is known in the caseα > 1. In particular, it is an open problem whether
there exist globally defined smooth solutions. Since pure analysis appears to be extremely
delicate, we study this problem using a combination of analytical and numerical methods.

We illustrate the possible behavior in the stable casesα = 0.5 andα = 1 with a couple of
numerical solutions. In both cases, we form initial data for the solutions by perturbing the
uniform shear slightly by a small “bump” centered atx = 0.7. These initial data correspond
to introducing a small amplitude, wide shear layer inv. See Fig. 2. In Fig. 3, we plot a
numerical solution forα = 0.5. The stability of the uniform shear is evident, although note
that θ is not constrained to remain uniform in space. In general, it is difficult to obtain
accurate numerical solutions of (4) and we discuss details of our computational method
below. As a partial validation of our numerical technique, we verify the estimates onvx and
θ in (7). In Fig. 4, we plot(maximum ofvx − V)t1/3 and(maximum ofθ)t−2/3 versus time
computed from the numerical solution shown in Fig. 3. These plots suggest that the estimates
in (7) are indeed precise. Using a least squares line fit, we find that maximum ofvx − V
decreases liket−0.335 with a correlation in excess of 0.9999 and the maximum ofθ increases
like t0.666 with a correlation in excess of 0.99999. The theoretical values for the rates are
−1/3 and 2/3, respectively.

Whenα = 1, the slight perturbation to the shear profile remains fixed as time passes;
see Fig. 5. To emphasize the degree to whichvx remains fixed, we plot the initial and final

FIG. 2. Plots of the initial data forvx andv used for the computation shown in Fig. 3.
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FIG. 3. Plots of the evolution ofvx versus time andθ at t ≈ 2500000 withα = 0.5. Initially, vx andθ have
the value 1 perturbed by a smooth bump of height 0.2 and width 0.2 centered atx = 0.7.

profiles in Fig. 6. The perturbation initially present inθ grows; see Fig. 6. Thus there is
some degree of localization and while the uniform shear flow does not attract solutions,
there is a stable attracting profile close to the uniform shear flow (but no smoothing of the
solution).

In both casesα = 0.5 andα = 1, other smooth perturbations in the initial data yield the
same qualitative behavior. The only significant difference is that the time scale forv to
converge to a steady state is altered.

The behavior of numerical solutions forα > 1 is much different than in the stable case
of α ≤ 1. In Fig. 7, we show the evolution of a numerical solution forα = 2 starting
with the same slight perturbation of the uniform shear flow shown in Fig. 2. A sharp
shear layer in the flow is clearly developing. In Fig. 8, we show the evolution ofθ and a
plot of the maximum value ofvx in x versust . The plot of the maximum ofvx versust
suggests that the peak height ofvx grows at an exponential rate witht after an initial
transient period passes. This corresponds to the shear layer approaching a discontinuous
profile att = ∞. The temperatureθ is growing uniformly inx but grows much faster at the
peak.

In this paper, we investigate (5) under the assumption (7) withα > 1 using a combination
of numerical and analytical tools. Our results suggest that generic solutions of (5) that begin

FIG. 4. Plots of(maximum ofvx − V)t1/3 and(maximum ofθ)t−2/3 versus time computed from the numerical
solution shown in Fig. 3.
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FIG. 5. Plot of the evolution ofvx andv versusx whenα = 1. The initial data are shown in Fig. 2.

FIG. 6. Plots ofvx versusx at t = 0 andt ≈ 130000 andθ at t ≈ 130000 withα = 1. The plots ofvx at the
two times are indistinguishable.

FIG. 7. Plots of the evolution ofvx versus time and the evolution ofv versus time withα = 2. The initial data
are shown in Fig. 2.

FIG. 8. Plots of the evolution ofθ versus time and maxx vx(·, x) versus time corresponding to the solution
shown in Fig. 7. The vertical axis of the plot on the right is logarithmic.
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as smooth perturbations of the uniform shear flow exist for all time but form shear layers
that become arbitrarily sharp as time passes. While the formation of layers is unstable
behavior, the layers have a kind of structural stability in the sense that data representing
nearby perturbations of the same function produce shear layers in the same location and of
the same shape and size. We propose a model for the layers which fits the observed behavior
very well and use the model to explain some aspects of the behavior of the solutions.

The results shown in Figs. 7 and 8 point to the numerical and analytical difficulties
encountered in a study of (5). Particular problems are the multiscale nature of sharp shear
layers, the long-time transient to the formation of shear layers, and the apparent loss of
regularity, or “blow-up,” in the solutions at infinity. We counter these difficulties by first
introducing new unknowns and a time variable, which has the effect of changing (5) into
a system of reaction–diffusion equations, where the interesting behavior occurs on a more
reasonable time scale and the regularity of the solutions is better understood. We then
construct a numerical method with special stability properties and use a posteriori error
estimates to adaptively control the error by mesh refinement.

In Section 2, we use an equivalent formulation of the original problem (5) using the shear
stress and the temperature as basic variables. This leads to a system of reaction–diffusion
equations which is more amenable to mathematical and numerical analysis. In Section 3,
we present a description of the adaptive finite element method we use to compute solutions,
giving some details of special stability properties built into the method. We also justify the
use of adaptive mesh refinement and describe the adaptive error control briefly. With the tools
developed in these two sections, we are then in a position to be able to attack the problem.
We begin in Section 4 by computing a model function that satisfies the differential equation
to within a very small residual by an iterative process in which we successively correct the
residuals to obtain increasingly accurate approximate solutions. Using numerics, we show
that the model function is very close to being a true solution. We also present evidence
that a solution that begins as an arbitrary smooth perturbation to the shear flow converges
to the model function in the limit of large time. This sets up the theme of Section 5, in
which we investigate the convergence of solutions to the model function. In particular, we
consider a systematic sequence of initial data and use least squares line fitting to compare
each solution obtained to the corresponding model solution. The evidence suggests that
solutions that begin as smooth perturbations of the uniform shear flow converge to the
model function. Then in Section 6, we widen the investigation of numerical solutions to
consider more exotic initial data and also changes to the model in the form of varyingα or
adding a diffusion term to the original equations. We present evidence that suggests that the
phenomena we observe in previous sections are robust with respect to altering the model
and we also uncover some interesting and unexplained new behavior. Finally in Section 7,
we summarize our results.

2. A REFORMULATION OF THE PROBLEM

The first step in the analysis of (5) is to reformulate the problem in order to make
sophisticated analytical and numerical methods available. We describe and motivate the
reformulation in this section.

The reformulation has two steps. First we replace (5) for the velocityv and temper-
atureθ by an equivalent system of reaction–diffusion equations for the shearσ and the
temperatureθ . There are two reasons. First, the results in Fig. 2 suggest thatvx blows up at
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infinity whenα > 1. We can expect such loss of regularity to have a strongly negative effect
on the approximation properties of a numerical scheme. Dealing with this negative effect
is complicated by the fact that it is indirect unless we explicitly set out to approximate the
derivatives of the solution. In contrast using the shearσ = θ−αvx means that we approxi-
matevx directly. This has the consequence that the criteria we use to adaptively refine the
mesh automatically add mesh points in regions wherevx becomes large. The second reason
for changing the problem into a reaction–diffusion system is that the theories for analysis
and numerical approximation of reaction–diffusion systems are both well developed, giving
many useful tools. In particular, we use the ideas of invariant regions and comparison prin-
ciples (see Chuehet al.[7] and Smoller [22]) and the theory of a posteriori error estimation
and adaptive error control for finite element methods (see Estepet al. [16]).

Differentiatingσ = θ−αvx and substituting it into the equation forv in (5) yields a system
of degenerate reaction–diffusion equations

σt − θ−ασxx = −αθα−1σ 3, 0< x < 1, 0< t,
(10)

θt = θασ 2, 0< x < 1, 0< t,

with boundary conditions and initial data given by

σx(0, t) = σx(1, t) = 0, 0< t,
(11)

σ(x, 0) = σ0(x), θ(x, 0) = θ0(x), 0< x < 1,

In the second step of the reformulation of (5), we attempt to account for the natural
increase in temperature due to the assumption of an adiabatic process and to the long time
scales observed in the computed solutions. To find the natural time scale in the system, we
first neglect the variation in space and consider the resulting system of ordinary differential
equations

σt = −αθα−1σ 3,
(12)

θt = θασ 2.

Separating variables, we find thatσt/σ = −αθt/θ or σ = ĉθ−α. Substituting this into the
equation forθ and solving, we obtain

θ(t) = ((α + 1)ĉ2t)1/(1+α) and σ(t) = ĉ((α + 1)ĉ2t)−α/(1+α).

This suggests that we rescale the stress and temperature as

s̃(x, t) = (t + 1)α/(1+α)σ (x, t), r̃ (x, t) = (t + 1)−1/(1+α)θ(x, t). (13)

In addition, we change to a logarithmic time scale by settingτ = log(t + 1). With r (·, τ ) =
r̃ (·, eτ − 1) ands(·, τ ) = s̃(·, eτ − 1), the functionsr ands solve the problem

sτ − r−αeτ/(1+α)sxx = α

1+ α s(1− (α + 1)r α−1s2), 0< x < 1, 0< τ,

(14)

rτ = − 1

1+ α r (1− (α + 1)r α−1s2), 0< x < 1, 0< τ.
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The corresponding boundary and initial data become

sx(0, τ ) = sx(1, τ ) = 0, 0< τ,
(15)

s(x, 0) = s0(x), r (x, 0) = r0(x), 0< x < 1.

Note thats0(x) = σ0(x) andr0(x) = θ0(x).
To see that the variablesr ands are natural for this problem whenα ≤ 1, we use the

concept of invariant regions. An invariant region for a system of differential equations
is a region in phase space with the property that a solution that begins with data inside
the region remains inside for all time. The existence of a compact invariant region for a
system of reaction–diffusion equations has strong consequences such as global existence
and smoothness of solutions. See Smoller [22] for a detailed discussion.

In general, it can be difficult to find an invariant region for a system of equations. However,
it is often easier to find a special kind of invariant region called an invariant rectangle,
which is an invariant region consisting of a generalized rectangle in phase space with sides
parallel to the coordinate planes. There is a simple geometric condition that guarantees
that a rectangle is invariant for a system of the form (14) which is that the reaction term
points inward on each face of the rectangle. In fact, a common way of demonstrating the
existence of a compact invariant region for a given system is to find new variables in which
the corresponding problem has an invariant rectangle.

We plot the phase fields for (14) in the casesα = 0.5,α = 1, andα = 2 in Fig. 9. We can
find many invariant rectangles in the caseα = 0.5 and many invariant “strips” whenα = 1.

On the other hand, there is no apparent invariant region bounded away from the coordinate
axes whenα = 2. In fact, the numerical evidence for the formation of arbitrarily sharp shear
layers whenα > 1 suggests that there cannot be an invariant region for the solution when
α > 1. In Fig. 10, we show the evolution ofs andr corresponding to the computations
shown in Figs. 7 and 8 forσ andθ . The formation of a shear layer corresponds to blow up
in r in the form of a sharp, highly localized peak that grows withτ .

We can devise a partial explanation of the observed behavior inr ands after realizing
there is a conserved integral quantity involvingr ands. Indeed, (6) implies that∫ 1

0
s(·, x)r α(·, x) dx =

∫ 1

0
σ(·, x)θα(·, x) dx =

∫ 1

0
vx(·, x) dx = V. (16)

FIG. 9. Plots of the phase fields for (13) in the casesα = 0.5, α = 1, andα = 2. Both zero level contours
and the boundaries of the invariant regions are drawn.
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FIG. 10. Plots of the evolution ofs andr versus time corresponding to the computations shown in Fig. 7.

If s were independent of the spatial variable, as in the ordinary differential equation model,
the conserved quantity would imply that a sharp peak inr must become more localized as
the peak grows in height while away from the peak,r would have to tend to zero. We plot
r at τ ≈ 14 in Fig. 11.

However, though nearly flat,s in fact is not constant inx; see Fig. 11. In regions where
r becomes small, the diffusion in the equation fors becomes large and consequentlys is
relatively constant inx. However, in a narrow region near the peak ofr , the diffusion in
the equation fors is extremely close to zero allowing for an extreme degree of localization
in the spatial profile ofs. Correspondingly, the effect of the growth of a narrow peak inr
on the conserved quantity is partly compensated by the behavior ins. This small lack of
uniformity and smoothness in the space behavior ofs, whenα > 1, turns out to be crucial
to the observed behavior ofr ands as well as the crux in the analysis of the problem.

3. THE NUMERICAL METHOD

There are several particular concerns when constructing a numerical method for (14) in
view of the formation of shear layers. First, there is an issue of accuracy arising from the
extreme multiscale behavior associated with sharp shear layers. Second, the formation of
shear layers takes place after a significantly long transient time. Third, the formation of shear
layers is associated with blow-up in the solutions at infinity. The goal can be summarized
as creating a numerical method that maintains accuracy during the onset of blow-up while
avoiding the introduction of artificial, or numerical, instabilities.

We employ a finite element method in which the error is controlled via adaptive mesh
refinement. The refinement is controlled by means of an a posteriori error estimate in

FIG. 11. Plotsr ands at τ ≈ 14 corresponding to the computation shown in Fig. 10.
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FIG. 12. Plot of the peak height ofr versusτ for a series of fixed mesh computations usingm=
32, 64, . . . ,16000 nodes and one adaptive mesh computation denoted by the solid line starting with the ini-
tial data used in the computation shown in Fig. 10. The adaptive computation is using 8192 elements atτ = 14.

which the error is measured in terms of properties of the numerical solution. This control
avoids strong assumptions or knowledge about the regularity of the solution that cannot be
verified in this problem. Since adaptive methods are relatively complicated to implement, we
motivate the use for computing solutions of (14) using an experiment. We compute numerical
solutions of (14) with the initial data used in the computation shown in Fig. 10 using fixed
meshes withm= 32, 64, . . . , up to 16,384 elements and one solution using the adaptive
strategy (described in detail below). In Fig. 12, we plot the peak height ofr measured from
the numerical approximation ofr versusτ for each computation. When a fixed mesh is used,
the peak height ofr invariably stops growing after the “tip” of the peak becomes narrower
than the mesh spacing; hence we find that the maximum peak height depends onh, which
can be seen clearly in the plot. On the other hand, the peak height off measured from the
adaptive computation indicates an unbounded exponential growth rate inτ . We believe the
adaptive computation is much more accurate than any of the computations on the fixed mesh,
while only 8192 elements are used at the end of the adaptive computation shown in Fig. 12.

However, using adaptive meshing to solve a problem exhibiting “blow-up” raises an
issue of numerical stability. In effect, mesh refinement can put “energy” into the system
and thus be a source of artificial “blow-up.” This happens, for example, if the numerical
method has some instability that affects the error estimator which in turn calls for mesh
refinement that can further drive the instability. To avoid this, we construct a finite element
method that has several special stability properties. For one thing, the method preserves a
discrete version of the conserved quantity (16). As we have seen, the conserved quantity
plays an essential role in determining the blow-up profile. It also provides a measure of
the accuracy of the numerical solution over time. Another stability property of the finite
element method is that for a general class of reaction–diffusion systems, it exactly preserves
invariant rectangles for all sufficiently small time steps. Moreover, the adaptive error control
we employ guarantees that the numerical method approximately preserves invariant regions
for a larger class of reaction–diffusion systems. We give details of these properties below.
For now, we note that the plot in Fig. 12 suggests that at any fixedτ the peak heights ofr
computed on the uniform meshes converge to the peak height obtained with the adaptive
computation as the number of elements increases. Moreover we obtain virtually indistin-
guishable plots of the peak height ofr from adaptive computations corresponding to all
error tolerances smaller than a critical value (which is relatively large).
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The finite element method is a variation of the space–time, discontinuous Galerkin (dG),
finite element method. We describe the method and some results briefly and refer to Estep
et al. [16, 17] for more details on the method and the a posteriori error analysis.

We partition [0,∞) as 0= τ0 < τ1 < τ2 < · · · < τn < · · · , denoting eachτ interval by
In = (τn−1, τn) andτ -step bykn = τn − τn−1. To each intervalIn, we associate a partition
Tn of (0, 1) described by nodesxn,0 = 0< xn,1 < · · · xn,mn+1 = 1 with mesh sizeshn,i =
xn,i − xn,i−1. Note that mesh changes are allowed acrossτ nodes.

The approximation is a discontinuous constant polynomial inτ and a continuous, piece-
wise linear polynomial in space on each space-τ “slab” Sn = (0, 1)× In. In space, we let
Vn ⊂ H1(0, 1)× H1(0, 1) denote the space of piecewise, linear, continuous vector-valued
functionsv(x) = (v1, v2)

> defined onTn. Then on each slab, we define

W0
n = {w(x, τ ) : w(x, τ ) = vn(x), vn ∈ Vn, (x, τ ) ∈ Sn}.

Finally, we letW0 denote the space of functions defined on the space-τ domain(0, 1)× R+

such thatv|Sn ∈ W0
n for n ≥ 1. Note that functions inW0 are generally discontinuous across

the discreteτ levels and we denote the jump acrossτn by [w]n = wn − wn−1.
In order to construct a method that preserves the integral quantity in a discrete sense,

we change variables to replacer by r̂ = r α. All of our results are presented in terms of the
original r . The problem (14) is changed to

sτ − r̂−1eτ/(1+α)sxx = α

1+ α s
(
1− (α + 1)r̂ (α−1)/αs2

)
, 0< x < 1, 0< τ,

(17)
r̂τ = − α

1+ α r̂
(
1− (α + 1)r̂ (α−1)/αs2

)
, 0< x < 1, 0< τ,

with boundary and initial data

sx(0, τ ) = sx(1, τ ) = 0, 0< τ,
(18)

s(x, 0) = s0(x), r̂ (x, 0) = r0(x)
α, 0< x < 1.

To simplify the notation, we letu = (u1, u2) = (s, r̂ )> and write the variational formu-
lation of (17) asu ∈ L2(H1(0, 1)× H1(0, 1)) such that∫ τ

0
(uτ , v)dτ +

∫ τ

0
(ux, (D(u, τ )v)x) dτ =

∫ τ

0
( f (u), v)dτ

for all v ∈ L2(H1(0, 1)× H1(0, 1)) with u(·, 0) = u0 = (s0, r α0 )
>, whereL2(H1(0, 1)×

H1(0, 1)) denotes functions that areL2 in τ and H1 in x, (,) denotes theL2(0, 1) inner
product with corresponding norm‖ ‖, and

D(u, τ ) =
(

eτ/(1+α)u−1
2 0

0 0

)
, f (u) =

(
u1
(

α
1+α − αu(α−1)/α

2 u2
1

)
−u2

(
α

1+α − αu(α−1)/α
2 u2

1

)
)
.

Note we are simply assuming thatu lies in the indicated space of course. The discontinuous
Galerkin method reads: computeU ∈ W0 such that forn ≥ 1,∫

In

(Uτ , v)dτ +
∫

In

(Ux, (D(U, τ )v)x) dτ + ([U ]n, v) =
∫

In

( f (U ), v)dτ

for all v ∈ Vn andU (·, 0) = U0 ≈ u0 is a suitable approximation of the initial data.
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As can be seen, the discontinuous Galerkin method is an implicit method inτ requiring
the solution of a system of nonlinear equations on eachτ interval. However, we are com-
puting solutions of (14) that are not very smooth and therefore theτ steps have to be kept
small for the sake of accuracy, negating any possible gain in efficiency from using largeτ

steps in a nonlinear discretization. Thus, we modify the standard discontinuous Galerkin
method to construct a semiimplicit method. The modifications are obtained by introducing
an extrapolation operator and numeric quadrature in the variational formulation of (14).

To make the discretization semiimplicit, we use the extrapolation operatorP defined on
U ∈ W0 by PU |In = PnUn−1 for n ≥ 1, wherePn denotes an interpolation operator into
Vn. (To maintain smooth profiles near the “tip” of the peak inr , we definePn using local
averaging.) We also writef as f (u) = fe(u)u+ fi (u)u for diagonal matrices

fe(u) =
(

0 0

0 − α
1+α + αu(α−1)/α

2 u2
1

)
and fi (u) =

(
α

1+α − αu(α−1)/α
2 u2

1 0

0 0

)
.

The semiimplicit method is found by computingU ∈ W0 satisfying∫
In

(Uτ , v)dτ +
∫

In

(Ux, (D(PU, τ )v)x) dτ + ([U ]n, v)−
∫

In

( fi (PU )U, v)dτ

=
∫

In

( fe(PU )PU, v)dτ,

for all v ∈ Vn. As the final step in the discretization, we use quadrature to evaluate some of
the integrals in this equation. Since we expect first-order convergence inτ and second-order
in x, we use the rectangle rule to evaluate the integrals inτ with the right-hand endpoint
of In and the trapezoidal, or lumped mass, quadrature rule to evaluate the last three space
integrals. We compute the space integral for the diffusion term exactly. Noting thatUτ ≡ 0,
we get thatUn ∈ Vn satisfies(

Un
x , (D(PnUn−1, τ )v)x

)
kn+〈Un, v〉−〈 fi (PnUn−1)Un, v

〉
kn

=〈Un−1, v〉+〈 fe(PnUn−1)PnUn−1, v
〉
kn, (19)

for all v ∈ Vn, where〈 , 〉 denotes the lumped massL2 inner product on functions inVn.
Equation (19) yields a linear tridiagonal system that we solve with a direct method.

Combining the dG method with the rectangle rule to compute integrals in time and
the lumped mass quadrature rule to evaluate integrals in space yields a method with strong
stability properties. In particular when applied to a system of nonsingular reaction–diffusion
equations with constant diffusion in which the solution is converging to a steady state, the
approximation converges to the same steady state. In general for such systems, the method
exactly preserves any invariant rectangles that exist for the continuous system under a
CFL-like condition on the time steps.

The choice ofτ steps and space meshes is based on an a posteriori estimate of the
error ofU . We refer to Estepet al. [16] for details of the a posteriori error analysis and
its use for computational error estimation and adaptive mesh refinement. The quality of
the discretization is measured locally in terms of the residualR, which is obtained by
substitutingU into the (weak form of the) differential equation. The residual measures
show how well the numerical solution satisfies the differential equation at each point. The
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FIG. 13. Plots of theτ steps and number of mesh nodes for the adaptive computation in Fig. 12 versusτ .

true solution has residual equal to zero, of course. The erroreof U is related to the residual
of U using a variational analysis that involves the dual problem to the original problem
(14). The estimate takes the form

‖e(·, τ )‖ ≤ S(τ ) max
0≤s≤τ

‖R(·, s)‖ (20)

for τ ≥ 0. S(τ ) is called the stability factor and reflects the stability of the solution up to
τ . The stability factor plays the role of a condition number of a matrix in the solution of a
linear system. To obtain an error bound, we can boundS(τ ) using properties such as well-
posedness. Typically, such bounds grow exponentially inτ . In most problems in practice,
S(τ ) is estimated computationally by solving the dual problem numerically because long
τ exponential growth is not observed. However, in the case of (14) the computed stability
factor grows at a steady slow exponential rate. In this situation, it is reasonable to control the
error by equidistributing the local contributions to the residual ofU from each interval. To
illustrate how the adaptivity works, in Fig. 13 we plot theτ steps and number of elements
versusτ used for the computation withα = 2 shown in Fig. 12. We also show the adapted
mesh atτ ≈ 12 in Fig. 14. As a partial validation of the consistency of the numerical results,
we repeated many of the computations presented in this paper for a range of tolerances on
the size of the residual. We found that using tolerances smaller than a (relatively large)
critical value leads to consistent numerical results. The computational results presented in
this paper correspond to residual tolerances in the range of 10−3 to 10−4.

FIG. 14. Plot of the mesh sizes versusx for the adaptive computation atτ ≈ 12 for the adaptive computation
in Fig. 12.
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As mentioned, one advantage gained from this adaptive error control is that it approxi-
mately preserves invariant regions. More precisely, it is proved in Estepet al. [16] that if
there is an invariant rectangle for the true solution of a general system of reaction–diffusion
equations, then the numerical solution computed so as to control the residual will remain
inside an approximate invariant rectangle. Moreover, the approximate invariant rectangle
converges to the true invariant rectangle as the tolerance on the residual is decreased to
zero. These are important stability results because they eliminate the possibility of artificial
blow-up in the sense that if the true solution does have an invariant rectangle, then for
sufficiently small tolerances, we will not observe blow up in the numerical solution—Vice
versa if we observe blow up in numerical solutions regardless of the tolerance used in the
adaptive error control; this is strong evidence that blow up is occurring.

These stability results depend on the form of the reaction–diffusion system and the
numerical method only to the extent that they require certain energy estimates on the
approximation. These estimates are the discrete analogs of energy estimates on derivatives
of the true solution that can be proved once an invariant rectangle for the true solution
has been established. In Estepet al. [16], the required estimates are established for dG
approximations on a general class of reaction–diffusion equations, but not directly for (14).
The analogous continuous estimates can be proved for (14) whenα < 1, so we conjecture
that it is possible to obtain the discrete estimates in this case. We do not believe the continuous
estimates hold whenα > 1. Experimentally, the numerical method appears to preserve the
invariant rectangles that exist for the true solution whenα < 1. In addition, as mentioned,
we obtain consistent rates of growth of, for example, the peak height ofr for all sufficiently
small tolerances.

As mentioned, the finite element solution (19) preserves a discrete version of the con-
served quantity (16). In particular, we show that if the space meshes are held constant inτ

then

m+1∑
i=0

Un
1,i U

n
2,i =

m+1∑
i=0

Un−1
1,i Un−1

2,i (21)

for all n, wherem= mn. In terms of the original variables, this means that

m+1∑
i=0

Sn
i

(
Rn

i

)α = m+1∑
i=0

Sn−1
i

(
Rn−1

i

)α
usingS≈ s andR≈ r to denote the numerical approximations.

Since the mesh is fixed, we havePnUn−1 = Un−1. We decompose (19) into equations
for each component((

Un
1

)
x,
((

Un−1
2

)−1
eτn/(1+α)v

)
x

)
kn +

〈
Un

1 , v
〉

−
〈(
− α

1+ α + α
(
Un−1

2

)(α−1)/α(
Un−1

1

)2
)

Un
1 , v

〉
kn =

〈
Un−1

1 , v
〉

(22)

and

〈
Un

2 , v
〉 = 〈Un−1

2 , v
〉+〈( α

1+ α − α
(
Un−1

2

)(α−1)/α(
Un−1

1

)2
)

Un
2 , v

〉
kn. (23)
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We choosev = Un−1
2 in (21) andv = Un

1 in (23) and note that the diffusion term in (22) is
zero with this choice. We obtain the equations

〈
Un

1 ,U
n−1
2

〉 = 〈Un−1
1 ,Un−1

2

〉−〈( α

1+ α − α
(
Un−1

2

)(α−1)/α(
Un−1

1

)2
)

Un
1 ,U

n−1
2

〉
kn

〈
Un

2 ,U
n
1

〉 = 〈Un−1
2 ,Un

1

〉+〈( α

1+ α − α
(
Un−1

2

)(α−1)/α(
Un−1

1

)2
)

Un
2 ,U

n
1

〉
kn.

Adding these equations gives〈Un
1 ,U

n
2 〉 = 〈Un−1

1 ,Un−1
2 〉, which is (21).

Mesh refinement leads to a very slow increase in the quantity
∑m+1

i=0 Un
1,i U

n
2,i so the

adaptive solution is not exactly conservative. In fact, even without the changes caused by
mesh refinement, round-off errors in the computation ofUn also tend to cause increases
in the “conserved” quantity. However, both of these increases are extremely small and∑m+1

i=0 Un
1,i U

n
2,i maintains the same value to 9–10 decimal places for theτ scales of compu-

tations used in this paper. On the other hand, if we compute for sufficiently largeτ , with a
range that depends on the data, then

∑m+1
i=0 Un

1,i U
n
2,i begins to change significantly from the

initial value. In general forτ this large, the diffusion in (19) is nearly zero and consequently
the system is nearly singular because of the Neumann boundary conditions.

4. A MODEL FOR SOLUTIONS THAT FORM SHEAR LAYERS

In this section, we use a combination of analysis and numerics to identify a special
approximate solution that is closely related to solutions that blow up. This approximate
solution is almost an exact solution, in the sense that its residual tends to zero asτ

tends to infinity. Solutions that blow up apparently tend toward this special approximate
solution relatively quickly, so that it characterizes the blow-up profile and the rate of
blow-up.

The construction of the approximate solutions is based on the observation that applying
variation of parameters to the ordinary differential equation forr in (14) yields a formula
for r as a function ofs,

r (x, τ ) = e−τ/(1+α)

r0(x)−1− w(x, τ ) , (24)

wherew solves

wτ = e−τ/(1+α)s2, w(0, 0) = 0.

Note that this implies that

r (x, τ ) ≥ e−τ/(1+α)r0(x) for 0< x < 1 and 0< τ.

In other words,r cannot approach zero in finiteτ .
The formula forr could be used to eliminater from the reaction–diffusion equation for

s, but the resulting equation is very complicated. Rather than using a direct substitution, we
use an iterative procedure. Starting with an Ansatz on the form of the solutions, s(x, τ ) =
s1(x, τ ), we use (24) to compute a corresponding approximationr1(x, τ ) with initial data
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FIG. 15. Plots of the initial datar0(x) (26) and the numerical solutionr (x, τ ) at τ ≈ 21.

r1(x, 0) = r0(x). The approximation(s1, r1) does not satisfy the diffusion equation fors
exactly. We compute a corrections2 to s1 by solving the following elliptic problem

−r 2
1eτ/3(s2)xx = −(s1)τ + α

1+ α
(
1− (α + 1)r α−1

1 s2
1

)+ r 2
1eτ/3(s1)xx, 0< x < 1

(25)
(s2)x ≈ 0, x = 0, 1.

We can then use the corrected approximate solutions1+ s2 to compute a correctionr2 to
r1 using (24) as above. We can repeat this iteration as long as desired.

The following choice of initial data allows the two-point boundary value problem (24)
to be solved exactly

θ0(x) = r0(x) = C1

1+ C2(x − x̄)2
and σ0(x) = s0(x) = C3 (26)

while providing a smooth, “bump”-shaped perturbation to the initial uniform shear profile.
We plotr0(x)with C1 = 1.108422867,C2 = 1,C3 = 1, andx̄ = 0.7 in Fig. 15. We choose
the value ofC1 to normalizer0(x) to have average value 1. We plot the evolution of the
corresponding numerical solutions in Fig. 16 and plotr (x, τ ) versusx atτ ≈ 21 in Fig. 15.

Based on the numerical solution, we make the Ansatz that the leading order of the solution
s be independent ofx, i.e.,s(x, τ ) = s1(τ ) with

s1(τ ) = C3e−σ3τ . (27)

Next we solve the differential equation forr with s(x, τ ) = s1(τ ). The differential equation

FIG. 16. Plots of the evolution ofr ands versusτ starting with the initial data (26).



ANALYSIS OF SHEAR LAYERS 35

for w becomes

wτ (x, τ ) = C2
3e−((α+1)−1+2σ3)τ , w(0, 0) = 0.

We defineσ2 = (α + 1)−1+ 2σ3 and integrate the equation to find

w(x, τ ) = C2
3

σ2

(
e−σ2τ − 1

)
.

So from (24) it follows thatr1 is given by

r1(x, τ ) = C1e−τ/(α+1)

1+ C2(x − x̄)2+ C1C2
3σ
−1
2

(
e−σ2τ − 1

) .
If we set C1C2

3
σ2
= λ, thenr1 becomes

r1(x, τ ) = 1

λ

C1eσ1τ

1+ ( 1− λ
λ
+ C2(x − x̄)2

)
eσ2τ

.

Now we see that for a peak to develop atx = x̄ for r1, we have to setλ = 1. So we arrive
at the following approximation forr

r1(x, τ ) = C1eσ1τ

1+ C2(x − x̄)2eσ2τ
, (28)

where

C1C2
3

σ2
= 1, σ1 = 2σ3 and σ2 = (α + 1)−1+ 2σ3. (29)

With this normalization, the functionsr1 ands1 given by (28) and (27) are an exact solution
to the ordinary differential equation

(r1)τ = − 1

α
r1
(
1− (α + 1)r α−1

1 s2
1

)
.

Next we compute the residual ofr1 ands1 for the equation fors in (14). First note that

(r1)τ

r1
= − 1

α + 1

(
1− (α + 1)r α−1

1 s2
1

)
and the residualR(r1, s1) for the equation fors in (14) is given by

R(r1, s1) = (s1)τ − α

α + 1

(
1− (α + 1)r α−1

1 s2
1

)
= (s1)τ + α s1

r1
(r1)τ .

We first compute(r1)τ

(r1)τ = 2σ3C1eσ1τ

1+ C2(x − x̄)2eσ2τ
− C1C2σ2(x − x̄)2eσ2τ(

1+ C2(x − x̄)2eσ2τ
)2
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and this leads to the following expression for the residualR(r1, s1)

R(r1, s1) = C3σ3(2α − 1)e−σ3τ − αC1C3σ2(x − x̄)2e(σ2−σ3)τ

1+ C2(x − x̄)2eσ2τ
. (30)

If σ3 > 0, as is suggested by the numerical computation, we see thatR(r1, s1) tends to zero
asτ tends to infinity. So, asτ →∞, (r1, s1) is a solution of (13).

To compute the second-order term ofs2(x, τ ) of s(x, τ ) we specialize to the caseα = 2,
in which system (14) becomes

rτ = −1

3
r (1− 3rs2),

(31)

sτ = 2

3
s(1− 3rs2)+ r−2eτ/3sxx.

We set

s2(x, τ ) = C4
e−σ4τ

1+ C2(x − x̄)2eσ2τ
. (32)

The first and second derivative ofs2 with respect tox are given by

(s2)x(x, τ ) = − 2C2C4(x − x̄)e(σ2−σ4)τ(
1+ C2(x − x̄)2eσ2τ

)2

and

(s2)xx(x, τ ) = − 2C2C4e(σ2−σ4)τ(
1+ C2(x − x̄)2eσ2τ

)2 +
8C2

2C4(x − x̄)2e(2σ2−σ4)τ(
1+ C2(x − x̄)2eσ2τ

)3 .

Therefore the diffusion term in (30) becomes

r−2
1 eτ/3(s2)xx = −2

C2C4

C2
1

e(σ2−σ4−2σ1+ 1
3)τ + 8

C2
2C4

C2
1

(x − x̄)2e(2σ2−σ4−2σ1+ 1
3 )τ

1+ C2(x − x̄)2eσ2τ
. (33)

Next we solve forC4 andσ4 to insure that (33) is equal to the residual in (30). This yields
the following set of equations

2C2C4+ 3C2
1C3σ3 = 0

σ3− σ2+ σ4+ 2σ1− 1

3
= 0

C2
1C3σ2+ 4C2C4 = 0

σ4− σ2− σ3+ 2σ1− 1

3
= 0.

Together with the relations (29) we find that

C2
1C3

(
1

3
+ 2σ3

)
+ 4C2C4 = 0

2C2C4+ 3C2
1C3σ3 = 0 (34)

σ3+ σ4 = 2

3
.
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Combining the first two equations of (33) yields

1

3
+ 2σ3 = 6σ3.

Henceσ3 = 1/12 and from the last equation in (33) we conclude thatσ4 = 7/12.
The above analysis gives the following approximation for the solution of (14) with initial

data (26) and peak atx = x̄:

r (x, τ ) ≈ C1
eτ/6

1+ C2(x − x̄)2eτ/2
(35)

s(x, τ ) ≈ 1√
2C1

e−τ/12− C1

16C2

√
2C1

e−7τ/12

1+ C2(x − x̄)2eτ/2
.

We can continue this procedure to obtain a formal solution of (14) with initial data (26).
Via (24), the new approximation fors leads to a new approximation ofr . Next we choose
r2(x, τ ) such that̄r (x, τ ) = r1(x, τ )+ r2(x, τ ) ands̄(x, τ ) = s1(τ )+ s2(x, τ ) is an exact
solution of the equation forr . We compute the residualR(r̄ , s̄) and finds3(x, τ ) by solving

r̄ (x, τ )−2eτ/3(s3)xx(x, τ ) = R(r̄ , s̄).

In this way, we define a succession of functions that solve (14) with successively smaller
residuals.

To measure the degree to which these approximate solutions solve the differential equa-
tion, we make a quantitative comparison of the computed numerical solution plotted in
Fig. 16 with initial data (26) with the approximate solution given in (34).

We begin by comparing the approximater and the numericalr . We plot the maximum
of the numericalr versusτ in Fig. 17. After an initial transient period,r apparently grows
at a steady exponential rate. Removing the transient in the data in Fig. 17 by restricting
τ > 17.983 as shown on the right, we compute a least squares line fit on the growth of the
peak height at the location of the peakx̄ ≈ 0.68164 to find

Ĉ1 ≈ 0.785 and ˆσ1 ≈ 0.167≈ σ1 = 1/6,

where we usêq to denote a measured value of a theoretical quantityq. The correlation of
this line fit isρ2 ≈ 0.999999.

FIG. 17. Plots of the logarithm of the maximum and minimum heights ofr versusτ for the computation
shown in Fig. 16.
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FIG. 18. Plots of the logarithm of the maximum height ofs and the logarithm of the maximum ofs subtract
the minimum ofs versusτ for the computation shown in Fig. 16.

As seen in Fig. 17, the minimum ofr , which occurs atx = 0, appears to decrease
exponentially after the initial transient. We scale out the growth in the peak height ofr by
computing

Ĉ1eσ̂1τ

r (x, τ )
− 1

and compute a least squares line fit to this data atx = 0. We find

Ĉ2 ≈ 0.685 and ˆσ2 ≈ 0.500≈ σ2 = 1/2

with correlationρ2 ≈ 0.9999999999.
The plot ofs in Fig. 16 supports the Ansatz thats is nearly constant inx. In Fig. 18, we

plot the maximum ofs versusτ along with the difference of the maximum ofs and the
minimum ofs. We use least squares to fit a line to the data shown in Fig. 18 forτ > 17.983
to find

Ĉ3 ≈ 0.792 and ˆσ3 ≈ 0.083≈ σ3 = 1/12

with correlationρ2 ≈ 0.999999 while the difference in the maximum and minimum value
of s decreases exponentially at an approximate rate of 0.89. In every case, the computed
values of the parameters are very close to the values of the parameters in the approximate
solution (34).

We are unable to compute reliable numerical values for the parameters in the higher
order terms in the model because of subtractive cancellation errors that arise becauses
tends to zero everywhere at an exponential rate. A visual comparison of the computed
and predicted values ofs is compelling evidence, however. We plot the final profile of
s versusx in Fig. 19 along with the predicted profile computed from (34) using val-
ues forC1, C2, andτ computed in the analysis ofr above. Since the parameter values
are only accurate to within two places, these plots suggest a remarkably close agree-
ment. In particular, note that the profiles of the computed and predicted functions are very
similar.

However, the magnitude of the approximate and computeds agree to only two decimal
digits. The reason is that the computed solution begins with arbitrary data that is not close
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FIG. 19. Plot of the numerical solution fors and the predicted value from (34) atτ ≈ 21.

to a blow-up profile. In particular, the values ofC1, C2, C3, x̄, andγ do not satisfy the
equations relating these parameters. One serious consequence of this discrepancy is thatx̄
moves from 0.7 in the data to 0.68164 in the final solution, which violates the simplifying
assumption (29).

To obtain more natural initial data, we compute a new solution of (14) starting with data
(26) using valuesC1 = Ĉ1, C2= Ĉ2, C3 = Ĉ3, and x̄ = 0.68164 obtained from the first
numerical solution and then repeat the least squares model fit to compute new values of the
parameters. This second solution has a peak atx̄ = 0.67480, which means that the change
in x̄ from the initial value to the final value in the two solutions decreases from 0.01836 to
0.00694. Repeating this process several times, we find rapid convergence to initial data for
which x̄ does not move from the initial value. We list the parameter values computed from
four iterations in Table I.

There is a practical difficulty with this iterative process to produce “good” initial data.
Namely, the values of̂C2 decrease for each iteration. This means that each subsequent initial
datar0 becomes significantly broader. Consequently, the solutions take increasingly large
times to form a peak that is large enough to compute the parameter values accurately. In
fact, the peak height of the solution in the third iteration is less than 0.8. For this reason, the
remarkable accuracy in the parameter values ˆσ1, σ̂2, and ˆσ3 obtained for the first iteration
degrades in the following iterations.

To quantify the relation between the approximates and the computeds from the four
iterations, we plot the ratios of the approximates(x, τ ) to the computeds(x, τ ) versusx in
Figs. 20 and 21.

TABLE I

The Parameter Values in the Approximate Solutions Computed from the Numerical

Solutions Using Least Squares Line Fits for Four Iterations of Initial Data

Iteration Initial x̄ Final x̄ σ̂1 Ĉ1 σ̂2 Ĉ2 σ̂3 Ĉ3

0 0.700 0.68164 0.167 0.785 0.500 0.685 0.083 0.792
1 0.68164 0.67480 0.1666 0.349 0.5000 0.302 0.083 1.20
2 0.67480 0.67285 0.166 0.113 0.500 0.0969 0.083 2.09
3 0.67285 0.67285 0.166 0.0223 0.50 0.0190 0.082 4.68

Note.The correlations of the various fits were greater than 0.999999.
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FIG. 20. Plots of the ratio of both of the approximate solutions to the computed solutions versusx atτ ≈ 21
for iteration 0 (left) and 1 (right).

It turns out that ifx̄ = 0.5 in the initial data (26), then̄x = 0.5 for all τ . Thus we avoid
the problem of̄x moving during an initial transient for that special class of data. We show
the computed solution starting withC1 = 1.108422867,C2 = 1, C3 = 1, andx̄ = 0.5 in
Fig. 22. We give the computed parameter values in Table II. The ratio of the approximates
to the computeds values, given in Table II, is very close to 1.

To summarize, experimentally we find that generic numeric solutions starting from data
(26) converge to the approximate solution after an initial transient period while solutions
that satisfy the assumptions and Ansatz underlying the analysis agree very well for all time.

The approximate solution (34) which we have derived for the special initial data (26)
suggests the following model of the behavior ofr near the peak for more general initial data

r̃ (x, τ ) = A(x)eσ1τ

1+ B(x)eσ2τ
, (36)

whereA(x) > 0, B(x̄) = 0, andσ2 > σ1. The model function allows exponential growth
with rateσ1 at x̄ and exponential decay with rateσ2− σ1 away fromx̄.

The initial data used for the computations shown in Figs. 7, 8, and 10 are

r0(x)
2 =

{
1+ 1880(x − 0.64)2(x − 0.84)2, 0.64< x < 0.84

1, otherwise
(37)

s0(x) = 1.

FIG. 21. Plots of the ratio of both of the approximate solutions to the computed solutions versusx atτ ≈ 21
for iteration 2 (left) and 3 (right).
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FIG. 22. Plots of the evolution ofr versusτ starting with the initial data (26) with̄x = 0.5 and the ratio of
the approximates to the computeds.

This gives a smooth “bump” inr0 centered at 0.74 of width 0.2 and amplitude approxi-
mately 0.1. To analyze whether the suggested model forr does capture the behavior ofr
near the peak, we first plot the maximum ofr ands versusτ in Fig. 23 for the computa-
tion shown in Fig. 10. After a long initial transient period,r apparently grows at a steady
exponential rate whiles tends to zero at a steady exponential rate.

Removing the transient in the data in Fig. 23 by restrictingτ > 13.2, we compute a least
squares line fit on the growth of the peak height atx̄ = 0.8 to find

A(x̄) ≈ 3.34 and ˆσ1 ≈ 0.17≈ 1

6
.

The correlation of this line fit isρ2 ≈ 0.99999.
The minimum ofr appears to decrease exponentially after the initial transient. We plot

the minimum ofr in Fig. 24. We scale out the growth in the peak height ofr by computing

A(x̄)eσ̂1τ

r (x, τ )
− 1

and compute a least squares line fit to this data atx = 0.79980, where the minimum of
r (x, ·) is obtained. We find

σ̂2 ≈ 0.50

with correlationρ2 ≈ 0.9999999999. Hence, in the model (36) forr , we take, as for the
special initial data,

σ1 = 1/6 and σ2 = 1/2.

TABLE II

The Parameter Values in the Approximate Solution Computed

from the Numerical Solution Using Least Squares Line Fits

Initial x̄ Final x̄ σ̂1 Ĉ1 σ̂2 Ĉ2 σ̂3 Ĉ3

0.50000 0.5000 0.166 0.836 0.500 0.711 0.083 0.769

Note.The correlations of the various fits were greater than 0.999999.
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FIG. 23. Plots of the logarithm of the maximum height ofr ands versusτ for the computation shown in
Fig. 10.

Substitutingr̃ into the ordinary equation definingr in (14) along withα = 2, we can
solve for the model ofs,

s̃(x, τ ) = 1√
2
√

A(x)eσ3τ
(38)

with

σ3 = 1/12.

We verify thats is close tos̃ numerically. Using the values of the maximum ofs shown in
Fig. 23, we determine the exponential rate of decrease ofs asσ̂3 ≈ 0.088 with correlation
ρ2 = 0.99997. Recall that the predicted rate isσ3 = 1/12≈ 0.083. From (38), we predict
the value ofC3 = 1/

√
2C1 ≈ 0.39 while the computed value iŝC3 ≈ 0.40. In addition,

computing a least squares line fit on the data fors shown in Fig. 24, we find that after the
transient the difference in the maximum and minimum values ofs decreases exponentially
with rate 0.83 with correlationρ2 = 0.99997. Thuss approaches a constant profile inx
much more rapidly than it decreases to zero.

The functions̃r ands̃ are not solutions to (14) and substituting these functions into (14)
therefore leads to a nonzero residual. If we require that this residual tend to 0 asτ →∞,

FIG. 24. On the left, we plot the logarithm of the minimum height ofr versusτ for the computation shown in
Fig. 10. The minimum ofr (x, τ ) occurs forx = 0. On the right, we plot the logarithm of the difference between
the maximum and minimum values ofs versusτ .
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FIG. 25. On the left, we plot the evolution ofB(x) for the computation shown in Fig. 10. On the right, we
plot B(x) versusx for τ ≈ 0, 9.1, and 14. The plots forτ ≈ 9.1 andτ ≈ 14 are indistinguishable.

we obtain a differential equation for the coefficientA:

−3(A′(x))2+ 2A′′(x)A(x) = 0, 0< x < 1. (39)

Separation of variables yields two solutions of this equation

A(x) = C1 and A(x) = C1

(x + C1)2

for some constantC1. The second choice forA does not correspond with the observed
behavior ofr and therefore,A(x) has to be constant.

Specifying that the residual tend to zero asτ tends to infinity does not put any condition
on B(x). RatherB(x) is determined by the initial data through the limiting behavior of the
solutions. We can compute an approximate representation ofB using the formula

B(x) = C1 e−τ/3− r (x, τ )e−τ/2

r (x, τ )
. (40)

We plot the computedB(x) in Fig. 25. The plots ofB become indistinguishable forτ > 9,
which supports the contention that the solution is converging to the model function at
τ →∞.

To end this section, we plot in Fig. 26 the numerical solutionsv andθ corresponding
to the numerical solutionr ands shown in Fig. 16. In terms of the physical variables, the

FIG. 26. Plots of the evolution ofv andθ versusτ starting with the initial data (26).
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approximate solution (34) becomes

σ̃ (x, t) = 1√
2C1

(t + 1)−3/4 and θ̃ (x, t) = C1(t + 1)1/2

1+ C2(x − x̄)2(t + 1)1/2
.

Finally, we compute

ṽx(x, t) = C3/2
1 (t + 1)1/4

21/2
(
1+ C2(x − x̄)2(t + 1)1/2

)2 .

5. THE STABILITY OF THE MODEL FOR SHEAR LAYERS

In this section, we study the effect of the choice of the initial datar0 and s0 on the
convergence ofr ands to the model functions̃r ands̃. We begin by presenting examples
of solutions corresponding to various sizes of perturbation from the constant inr0. Then
we show a solution in which a high frequency, small amplitude perturbation is added to
r0. Following that, we consider the effect of altering the center of the perturbationx̄ in
r0. Finally, we present examples in whichs0 is perturbed slightly in various ways. The
numerical results in this section strongly suggest that the model functions are stable in
the sense that solutions corresponding to a wide range of smooth datar0 ands0 converge
to the model functions asτ →∞.

In the following computations, we take the initial data used for the solutions plotted in
Figs. 7, 8, and 10 as the base for comparison. We repeated these computations with the
special solution with data (26) as well as other shapes of initial perturbations inr0. In all
cases, we obtain results comparable to those we report here.

5.1. Varying the Size of the Initial Bump in r0

The initial data used for the computations shown in Figs. 7, 8, and 10 are

r0(x)
2 =

{
1+ 16A

W4 (x − x̄ −W/2)2(x − x̄ +W/2)2, x̄ −W/2< x < x̄ +W/2
1, otherwise

(41)
s0(x) = 1

with x̄ = 0.74,A = 0.2, andW = 0.2. This gives a smooth “bump” inr0 centered at̄x of
widthW and amplitude approximately12A.

In this section, we present solutions corresponding to data of the form (41) for special
choices ofA andW. The various choices are listed in Table III and the corresponding initial
datar0 are shown in Fig. 27.

Altering the data forr affects the length of the transient period. We plot the maximum
peak height on a log scale ofr ands in Fig. 28. Nonetheless, the curves for the solutions
become roughly parallel after some initial transient period.

In Fig. 29, we plot the profiles ofr (x, τ ) versusx atτ when the maximum height ofr is
approximately 40. It is evident that the profiles ofr have the same shape in the region of the
peak, and this shape is dictated by the form of the model. We plot the corresponding functions
B(x) in the models in Fig. 29 as well. These functions also have the same basic shape.

In Table IV, we list the parameter values in the model functionsr̃ ands̃ computed from
the numerical solutionsr ands using the least squares fits described in Section 4. All of the
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TABLE III

The Parameter Values for the First Set of

Initial Data

Data number W A x̄

1 0.2 0.2 0.7
2 0.2 0.1 0.7
3 0.2 0.4 0.7
4 0.4 0.2 0.7
5 0.1 0.2 0.7

FIG. 27. The plots ofr0(x) corresponding to the parameter values given in Table 3.

FIG. 28. Plots of the maximum heights ofr ands versusτ on a log scale for the solutions with data given in
Table 3.

FIG. 29. Plots ofr (x, τ ) versusx at τ when the height ofr ≈ 40 along with plots of the functionsB(x).
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TABLE IV

The Parameter Values in the Model Functions̃r and s̃ Computed

from the Numerical Solutions Using Least Squares Line Fits

Data σ1 C1 σ2 σ3 C3 PredictedC3

1 0.167 3.5 0.500 0.086 0.39 0.38
2 0.17 2.5 0.50 0.087 0.46 0.45
3 0.17 4.6 0.50 0.085 0.34 0.33
4 0.17 1.6 0.51 0.083 0.53 0.56
5 0.17 6.8 0.50 0.089 0.29 0.27

Note.The correlations of the various fits were greater than 0.999999.

numbers agree with the values predicted by the model to one place and most agree to
two places. Accurate values for Data 5, which is the narrower bump, are more difficult to
compute because the peak inr is narrower in the beginning. We computed the solutions for
Data 5 beginning with twice as many initial space mesh points as for the other computations.

We computed a variety of different bump sizes and also used other shapes and obtained
similar results in every case. The numerical evidence supports the conjecture that various
smooth perturbations in the initial constant profile lead to solutions that converge to their
respective model functions.

5.2. Introducing a Small Amplitude, High Frequency Oscillation in r0

We add a perturbation of the formε(x),

ε(x) = 0.05× cos(11πx)

to the initial data (41) with̄x = 0.74,A = 0.2, andW = 0.2 to get Data 6. We plot the
initial data and the evolution ofr in Fig. 30.

From the plot, it is possible to see that the small amplitude perturbations persist in the
solution asτ increases, but they become increasingly insignificant in height relative to the
forming peak. In Fig. 31, we plot the profiles ofr (x, τ ) and the correspondingB(x) versus
x at τ ≈ 14. The formation of the peak is the same in shape, width, etc., but interestingly,

FIG. 30. Plots of the initial Data 6 and the subsequent evolution ofr versusτ .
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FIG. 31. Plots ofr (x, τ ) andB(x) versusx at τ ≈ 14.

the location of the peak moves from 0.7 in the initial data to 0.71 in the final solution.
In Fig. 32, we plot the profile ofs(x, τ ) versusx at τ ≈ 14. The legacy from the initial
perturbation is apparent inB(x) but as can be expected, the oscillations ins are damped
out by the large diffusion that exists outside the immediate neighborhood of the peak inr .

Altering the data forr again affects the length of the transient period. We plot the
maximum peak height on a log scale ofr ands in Fig. 33. Nonetheless, the curves for
the solutions corresponding to the unperturbed and perturbed solutions become roughly
parallel after some initial transient period.

In Table V, we list the parameter values in the model functionsr̃ ands̃ computed from
the numerical solutionsr and s using the least squares fits described in Section 4 for
the unperturbed and perturbed solutions. Again we get very good agreement between the
parameters for the two computations.

We computed similar examples using a variety of regular and irregular small amplitude,
high frequency perturbations inr0 and obtained similar results. The numerical evidence
suggests that the formation of the shear layer dominates the dynamical behavior of solutions
of (14) and that a wide class of solutions converge to the model functions.

5.3. Varying the Location of the Initial Bump in r0

In this section, we present numerical results for solutions that begin with the “bump” in
r0 centered at different points̄x. We compare the solution corresponding to initial data (41)

FIG. 32. Plot ofs(x, τ ) versusx at τ ≈ 14.
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FIG. 33. Plots of the maximum heights ofr ands versusτ for Data 1 and 6 on a log scale.

with A = 0.2,W = 0.2, andx̄ = 0.6 (Data 7) and̄x = 0.8 (Data 8) to the original Data 1
with x̄ = 0.7.

Moving the location of the bump affects little. This is evident in the plots of the maximum
peak height on a log scale ofr ands in Fig. 34. In Table VI, we list the parameter values in
the model functions̃r ands̃ computed from the numerical solutionsr ands using the least
squares fits described in Section 4 for three different solutions.

We repeated these computations with the initial perturbation located at a variety of posi-
tions through [0, 1] and obtained similar results for all computations. The numerical evidence
suggests that moving the location of the perturbation has little effect on the convergence of
solutions to the model functions.

5.4. Introducing Perturbations into the Initial Profile of s0

In contrast to previous sections, we now consider the effect of an initial perturbation in
the value ofs0. To construct Data 9, we add a small amplitude, high frequency perturbation
ε(x),

ε(x) = 0.1× cos(11πx)

to s0 in (41). It turns out that adding perturbations tos0 that are relatively small compared
to the perturbations tor0 has little effect on the solutions.

In Fig. 35, we plot the profiles ofr (x, τ ) and the correspondingB(x) versusx atτ ≈ 14.
In Fig. 36, we plot the profile ofs(x, τ ) versusx at τ ≈ 14. The close agreement in these
profiles show that the perturbations ins0 have little effect in the end.

TABLE V

The Parameter Values in the Model Functions̃r and s̃ Computed

from the Numerical Solutions Using Least Squares Line Fits

Data σ1 C1 σ2 σ3 C3 PredictedC3

1 0.167 3.5 0.500 0.086 0.39 0.38
6 0.17 4.1 0.51 0.087 0.36 0.35

Note.The correlations of the various fits were greater than 0.999999.
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TABLE VI

The Parameter Values in the Model Functions̃r and s̃ Computed

from the Numerical Solutions Using Least Squares Line Fits

Data σ1 C1 σ2 σ3 C3 PredictedC3

1 0.167 3.5 0.500 0.086 0.39 0.38
7 0.17 3.3 0.51 0.087 0.40 0.39
8 0.17 3.2 0.51 0.087 0.40 0.40

Note.The correlations of the various fits were greater than 0.999999.

FIG. 34. Plots of the maximum heights ofr ands versusτ on a log scale.

FIG. 35. Plots ofr (x, τ ) andB(x) versusx at τ ≈ 14 for Data 1 and 9.

FIG. 36. Plot ofs(x, τ ) versusx at τ ≈ 14 for Data 1 and 9.
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FIG. 37. Plots of the maximum heights ofr ands versusτ for Data 1 and 9 on a log scale.

This is reflected in the length of the transient period, which is hardly altered. We plot the
maximum peak height on a log scale ofr ands in Fig. 37. Finally, we list the parameter
values in the model functions computed from the solutions in Table VII.

We computed several examples of solutions that begin with the same perturbation inr0

and various small amplitude perturbations ins0 and obtained similar results in every case.
The numerical evidence suggests that initial perturbations ins0 that are small compared to
the initial perturbations inr0 have little effect on the solutions.

We finish this section by considering the solution corresponding to an initial perturbation
in s0 while r0 is constant. More precisely, the initial Data 10 is

s0(x) =
{

1+ 16A
W4 (x − x̄ −W/2)2(x − x̄ +W/2)2, x̄ −W/2< x < x̄ +W/2

1, otherwise
(42)

r0(x) = 1,

with x̄ = 0.74,A = 0.2, andW = 0.2. This gives a smooth “bump” ins0 centered at̄x of
widthW and amplitudeA. We plot the evolution ofr ands in Fig. 38.

While the initial perturbation tos0 is damped out, it is still sufficient to cause a peak to
grow in r , albeit after a much longer transient period than we have seen so far. In Fig. 39,
we plot the profiles ofr (x, τ ) and the correspondingB(x) versusx at τ ≈ 29. The peak
is centered at 0.71 although the initial bump ins0 is centered at 0.7. In Fig. 40,we plot the
profile of s(x, τ ) versusx at τ ≈ 29. Both the late profile ofs andB are altered a little bit
from the corresponding plots for Data 1.

These data clearly lead to a longer transient period. We plot the maximum peak height
on a log scale ofr ands in Fig. 41. Nonetheless, the curves for Data 1 and Data 10 become
roughly parallel after some initial transient period.

TABLE VII

The Parameter Values in the Model Functions̃r and s̃ Computed

from the Numerical Solutions Using Least Squares Line Fits

Data σ1 C1 σ2 σ3 C3 PredictedC3

1 0.167 3.5 0.500 0.086 0.39 0.38
9 0.17 3.2 0.51 0.087 0.40 0.39

Note.The correlations of the various fits were greater than 0.999999.
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FIG. 38. Plots of the evolution ofr ands versusτ for Data 10.

FIG. 39. Plots ofr (x, τ ) andB(x) versusx at τ ≈ 29.

FIG. 40. Plot ofs(x, τ ) versusx at τ ≈ 29.

FIG. 41. Plots of the maximum heights ofr ands versusτ for Data 1 and 10 on a log scale.



52 ESTEP, VERDUYN LUNEL, AND WILLIAMS

TABLE VIII

The Parameter Values in the Model Functions̃r and s̃ Computed

from the Numerical Solutions Using Least Squares Line Fits

Data σ1 C1 σ2 σ3 C3 PredictedC3

1 0.167 3.5 0.500 0.086 0.39 0.38
10 0.17 0.32 0.51 0.084 1.1 1.3

Note.The correlations of the various fits were greater than 0.999999.

In Table VIII, we list the parameter values in the model functionsr̃ and s̃ computed
from the numerical solutionsr ands using the least squares fits described in Section 4 for
the unperturbed and perturbed solutions. Again we get very good agreement between the
parameters for the two computations.

These numerical results give further evidence that the formation of the shear layer domi-
nates the dynamical behavior of solutions to (14) and that a wide class of solutions converge
to the model functions. In the next section we give more evidence of this fact by varying
the choice of initial data even further.

6. VARIATIONS IN THE MODEL EQUATIONS AND DATA

To this point, we have restricted the investigation to considering solutions that begin with
data that are close to one of two functions, namely the “smooth bump” and the special
solution, and toα = 2. In this section, we widen the consideration to more exotic choices
of data and also to variations inα and even in the differential equations themselves. In
some cases, we get results that are closely connected to the results obtained in the previous
sections. In other cases, we get new and interesting behavior that point to the complicated
nonlinear nature of (14).

6.1. Multiple Peaks

We previously considered the effect of adding a small amplitude, high frequency pertur-
bationε(x),

ε(x) = a× cos(11πx) (43)

to the bump data (41) and saw that it had little effect on the formation of the largest peak
in the solution. It is natural to consider the effect of adding such perturbations to initial
constant values forr ands. In Fig. 42, we plot the evolution ofr andv versusτ and t
for the solution corresponding to Data 11 obtained by adding (43) witha = 0.02 to the
initial r0 = 1. In Fig. 43, we plot the evolution ofr andv versusτ andt for the solution
corresponding to Data 12 obtained by adding (43) witha = 0.1 to the initials0 = 1. We
see the solutions develop several peaks of the same shape as those analyzed previously. The
solution corresponding to the initial perturbation ins0 has a much longer transient period.

Solutions corresponding to very broad initial data can also form more than one peak. We
form initial data by altering (26) to get Data 13,

r0(x) = 1.01223170451293

1+ (x − 0.5)4
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FIG. 42. Plots of the evolution ofr andv versusτ andt for Data 11.

ands0 = 1 so that bothr0 ands0 are symmetric aboutx = 0.5. We plot the evolution of
r andv versusτ andt in Fig. 44. Interestingly, one very broad peak initially develops but
the center “collapses” and two peaks are left to grow. Both peaks, centered at 0.40322 and
0.59678, respectively, appear to be growing at the same rate and with the same profile. We
compare the parameter values in the model computed by least squares for the solutions
corresponding to Data 0 and Data 13 in Table IX. For Data 13, the model is fitted to the
left-hand peak.

6.2. Reversing the Initial Perturbation

It is natural to consider the solution corresponding to (41) withA = −0.2,W = 0.2, and
x̄ = 0.7, in other words with an initial “dip” rather than a “bump”. We label this as Data 14.
The resulting solution is very interesting. We plot the evolution of the solution in Fig. 45
and the finals andr profiles in Fig. 46. The solution appears to form two extremely sharp
“spikes” at the positions where the initial data have discontinuities in the second derivative.
The spikes have profiles similar to those of other solutions on one side, but on the other side
they appear much steeper, even suggesting that the solution might lose differentiability at
the tips. This loss of regularity is also reflected in the profile ofs. Interestingly, one spike
appears to dominate the other. We study the “competition” between spikes in more detail
below.

6.3. Competition Between Spikes

We have seen several examples now of initial data leading to solutions with several spikes.
In this section, we consider the interaction of two spikes in one solution. It appears that

FIG. 43. Plots of the evolution ofr andv versusτ andt for Data 12.
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TABLE IX

The Parameter Values in the Model Functions̃r and s̃ Computed

from the Numerical Solutions Using Least Squares Line Fits

Data σ1 C1 σ2 σ3 C3 PredictedC3

0 0.167 0.785 0.500 0.0831 0.792 0.798
13 0.16 0.10 0.49 0.062 1.4 1.3

Note.The correlations of the various fits were greater than 0.999999.

FIG. 44. Plots of the evolution ofr andv versusτ andt for Data 13.

FIG. 45. Plots of the evolution ofr andv versusτ andt for Data 14.

FIG. 46. Plots ofr (x, τ ) ands(x, τ ) versusx at τ ≈ 22.
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TABLE X

The Parameter Values for Initial Data with Two Bumps

Data number W1 A1 x̄1 W1 A1 x̄1

15 0.2 0.2 0.4 0.2 0.2 0.7
16 0.4 0.2 0.3 0.2 0.2 0.7
17 0.2 0.4 0.3 0.2 0.2 0.7

there is a kind of competition between spikes and in situations in which the solutions lack
symmetry, one spike tends to dominate other spikes after a lengthy transient period.

We alter the bump data to give an initial function with two bumps, one atx̄1 and one
at x̄2.

r0(x)
2 =


1+ 16A1

W4
1
(x − x̄1−W1/2)2(x−x̄1+W1/2)2, x̄1−W1/2< x < x̄1+W1/2

1+ 16A2

W4
2
(x − x̄2−W2/2)2(x−x̄2+W2/2)2, x̄2−W2/2< x < x̄2+W2/2

1, otherwise
(44)

s0(x) = 1.

We compute solutions corresponding to parameter values listed in Table X. Data 15 has the
left-hand bump closer to the middle of [0, 1], Data 16 has a fatter bump, and Data 17 has a
taller bump.

In each case, the corresponding solutions form two peaks initially and then one peak
begins to dominate after a long transient period. We plot the evolution of the solutions for
Data 15 in Fig. 47. We plot the evolution of the solutions for Data 16 in Fig. 48. Finally, we
plot the evolution of the solutions for Data 17 in Fig. 49. The data suggest that taller peaks
and peaks closer to the middle of [0, 1] dominate.

The degree of domination by one peak is not the same in the three solutions. This affects
the convergence of the solutions to the model. We compare the parameter values in the
model computed by least squares for the solutions corresponding to Data 0, 15, 16, and 17
in Table XI. In the solutions with multiple peaks, the model is fitted to the largest peak in
the solution. The closeness of the fit to the model appears to be correlated to the degree
that the larger peak dominates the other peak, with very good agreement for the solution
corresponding to Data 17.

FIG. 47. Plots of the evolution ofr andv versusτ andt for Data 15.
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FIG. 48. Plots of the evolution ofr andv versusτ andt for Data 15.

6.4. Varyingα

We use the valueα = 2 largely for computational reasons. Solutions forα > 2 for the
peaks that grow in height and become very narrow extremely rapidly and require excessively
fine discretizations for accurate computations. On the other hand, whenα approaches 1, the
transient period becomes longer and longer, leading to problems with accuracy due to the
accumulation of error.

The main observation about varyingα is that the behavior reported on in this paper
appears to depend smoothly on the value ofα. For example, whenα is close to 1, layers
form after a very long period when there is hardly any motion in the solution. We have seen
that whenα = 1, there is no smoothing nor peak formation in solutions. The slow evolution
for α close to 1 is evident in the plots of the evolution of the solutions forα = 1.1 beginning
with the special data (26) shown in Fig. 50.

Whenα is close to 2, the corresponding solutions appear very similar to the solutions
for α = 2 while there is a close correlation in the parameters for the model determined by
least squares. In Table XII, we list the parameter values for solutions forα = 1.9, 2.0, and
2.1 starting with special data (26).

6.5. Adding Diffusion to the Equation for r

It is natural to wonder about the extent to which the behavior of the solutions exhibited
so far depends on the singular nature of the equation for the rescaled temperaturer . In

FIG. 49. Plots of the evolution ofr andv versusτ andt for Data 15.
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TABLE XI

The Parameter Values in the Model Functions̃r and s̃ Computed

from the Numerical Solutions Using Least Squares Line Fits

Data σ1 C1 σ2 σ3 C3 PredictedC3

0 0.167 0.785 0.500 0.0831 0.792 0.798
15 0.23 1.1 0.57 0.14 0.97 0.67
16 0.19 2.4 0.53 0.096 0.46 0.18
17 0.17 2.4 0.50 0.084 0.33 0.34

Note.The correlations of the various fits were greater than 0.999999.

particular, the set of equations

sτ − r−αeτ/(1+α)sxx = α

1+ α s
(
1− (α + 1)r α−1s2

)
, 0< x < 1, 0< t,

(45)

rτ − εrxx = − 1

1+ α r
(
1− (α + 1)r α−1s2

)
, 0< x < 1, 0< t

with homogeneous Neumann boundary conditions forr ands is a natural variation of the
original model (14). Here we considerε to be a small diffusion parameter.

The presence of diffusion appears to regularize the solutions in the sense that a peak inr
develops to a point and then becomes fixed. The maximum peak height appears to increase
asε decreases. We plot the maximum ofr (x, τ ) for three solutions starting with the special
data (26) andε = 0.001, 0.0001, and 0.00001 along with the special solution computed
above in Fig. 51. The damping effect of the diffusion on the growth of the peak is similar to
that experienced by the numerical diffusion induced by coarse discretization, as in Fig. 12.

We also plot the minimum height ofr (x, τ ) in Fig. 51. We see that there is apparently
no lasting effect on the smallest value ofr from the diffusion term. This is also true of
the decay rate of the value ofs. In Fig. 52, we plot the maximum ofs(x, τ ) for the four
computations.

In terms of the physical variables, a solution of (45) forms a layer that steepens to a
certain point and then remains fixed after that. We plot the evolution of the solution for
ε = 0.00001 in Fig. 53.

FIG. 50. Plots of the evolution ofv andvx versusτ andt for the solution withα = 1.1 beginning with the
special data (26).
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TABLE XII

The Parameter Values in the Model Functions̃r and s̃ Computed

from the Numerical Solutions Using Least Squares Line Fits

α σ1 C1 σ2 σ3 C3 PredictedC3

2 0.167 0.785 0.500 0.0831 0.792 0.798
1.9 0.16 0.79 0.50 0.070 0.78 0.79
2.1 0.18 0.81 0.50 0.097 0.79 0.79

Note.The correlations of the various fits were greater than 0.999999.

FIG. 51. Plots of the maximum and minimum ofr (x, τ ) versusτ for solutions of (45) starting with the special
data (26) and the special solution.

FIG. 52. Plot of the maximum ofs(x, τ ) versusτ for solutions of (45) starting with the special data (26) and
the special solution.

FIG. 53. Plots of the evolution ofr andv versusτ andt for the solution of (45) withε = 0.00001.
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7. CONCLUSION

The goal of this paper is to explore the role of dissipation in the large-time behavior
of systems of nonlinear hyperbolic conservation laws. In particular, we are interested in
the question of whether the combined dissipative effect of viscosity and thermal diffusion
can counterbalance the destabilizing influence of nonlinearity. In this paper, we have in-
vestigated a fundamental system of conservation laws for a one-dimensional flow with a
temperature-dependent viscosity to determine whether or not solutions that begin near a
uniform shear profile develop arbitrarily sharp shear layers as time passes. We have shown
that the formation of shear layers is due to the fact that viscosity decreases sufficiently
quickly as temperature increases.

To analyze the fine structure of the bands we proposed a special function which solves
the problem to within an extremely small residual that converges to zero exponentially
quickly as time increases. The form of this function causes a shear layer to develop and this
layer becomes arbitrarily sharp with increasing time. We use numerics to show that this
model function is very close to being a true solution and we use the model to explain some
aspects of the behavior of the solutions. We also use careful numerics to show that a wide
class of solutions beginning as smooth perturbations of the uniform shear flow converge
to the model function as time passes and obtain quantitative information on the rate of
convergence. Finally, we consider more exotic initial data and also perturbations of the
original model equations and give evidence that the phenomena we uncover are in some
sense robust and generic.
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